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Lesson 3



• ACCURACY (Precision)

Engineers and technicians always wished the instruments being able to perform precise measurements
(with high accuracy). 
However it is unavoidable to make errors during measurement processes, so we must define a convenient 
way to express how good or how bad our measurements a are !   
A first simple way could be expressing the “distance” between the measurement a and the true value av

ε = |a - av|  which is the absolute error of the measurement.  
However, there is a more convenient way in engineering to express the accuracy of a measurement:  

Attitude of a measuring instrument to give the «true value»  av of a physical quantity !
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which is the relative error of the measurement (expressed in %), and gives an immediate and intuitive idea of 
the measurement accuracy !
If we knew the true value av , we were basically all set and we could go ahead to analyze the next characteristics.

Unfortunately, the true value of a physical quantity is generally unknown and unknowable !



To get EXACT INFORMATION about the measurand we should have available an exemplar measurement method !

A measurement is therefore a technical procedure that strives to get as close as possible to the truth of the natural 
world  and/or of the technology !  … But, it can never succeed … 

We can only minimize the unavoidable  uncertainties  εa :  trying to get εa → 0  UaA a  

There are two main types of error that 
can be done during a measurement:

1. Systematic (BIAS) errors 
2. Random (PRECISION) errors 

Measurement accuracy results from a 
combination of these two errors !

Bias errors are often “macroscopic” errors because they have a «technical origin» (instrument malfunction, 
bad conditions of use, strong external noise that the instrument can not reject, instrument out of calibration).
Bias errors CAN be discovered by a calibration procedure and, once highlighted, they MUST be eliminated !



Random errors are generally small “scatter errors”, that can 
not be avoided during a measurement and for which is 
impossible to find an exact reason !

Random errors can be studied after the bias error has been 
corrected for, or (better) eliminated.
Therefore the sum of all random errors is, sometimes, also 
called residual error.

The residual error always depends on unknown small random 
reasons, therefore it is much better referred with the word 
uncertainty !

According to the way we evaluating it, there are only two different types of UNCERTAINTY, which are classified
by the international «Guide to the expression of uncertainty in measurement» ed. JCGM 100: 2008  (GUM)
http://www.bipm.org/en/publications/guides/gum.html

1. Type A uncertainties: evaluated by a statistical analysis of series of observations (measurements)
2. Type B uncertainties: evaluated by a pool of comparatively reliable information

http://www.bipm.org/en/publications/guides/gum.html


The uncertainty of the result of a measurement reflects the “lack of exact knowledge” of the measurand value. 
The result of a measurement, after correction for recognized systematic effects, is still only an estimate of the value 
of the measurand because of the uncertainty arising from random effects and from imperfect correction of the 
result for systematic effects.
In practice, there are many possible sources of uncertainty in a measurement, including: 

a) incomplete definition of the measurand; 
b) imperfect realization of the definition of the measurand; 
c) non-representative sampling — the sample measured may not represent the defined measurand; 
d) inadequate knowledge of the effects of environmental conditions on the measurement or imperfect 

measurement of environmental conditions; 
e) personal bias in reading analogue instruments; 
f) finite instrument resolution or discrimination threshold; 
g) inexact values of measurement standards and reference materials; 
h) inexact values of constants and other parameters obtained from external sources and used in the data-

reduction algorithm; 
i) approximations and assumptions incorporated in the measurement method and procedure; 
j) variations in repeated observations of the measurand under apparently identical conditions. 

These sources are not necessarily independent, and some of sources a) to i) may contribute to source j).
Of course, an unrecognized systematic effect cannot be taken into account in the evaluation of the uncertainty of 
the result of a measurement but contributes to its error ! 



For simplicity, we start the study of uncertainty estimation with the type B uncertainty:

For an estimate xi of an input quantity Xi that has not been obtained from repeated observations, the
associated estimated variance u2(xi) or the standard uncertainty u(xi) is evaluated by scientific judgement
based on all of the available information on the possible variability of Xi . 

The pool of information may include :
• previous measurement data;
• experience with or general knowledge of the behaviour and properties of relevant materials and instruments;
• manufacturer's specifications;
• data provided in calibration and other certificates;
• uncertainties assigned to reference data taken from handbooks.

Examples of typical errors in mechanical measurements that can contribute to type B uncertainties :

p = d tgφ

Reading error for analogic instruments
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Mobility error for mechanical instruments Hysteresis error for mechanical instruments

Fidelity error: due to the disturbing and noise factors as temperature, humidity, electromagnetic fields, 
mechanical vibrations, atmospheric pressure, non-inertial reference frame ... 
It quantifies the sensitivity of the instrument to external interferences, and it has to be assessed using multiple 
repeated measurements over time, by changing the position and the conditions of use of the instrument while 
keeping the input variable strictly constant …

Zero shift error: due to loss of calibration of the mechanical components (recording springs) or electrical 
components (trimmer), or to the aging of the electronic components (resistors and capacitors) …



Calibration and standard references errors: due to the errors that are done while carrying out a calibration 
procedure or due to the inherent uncertainties of the reference standards used for the calibration !

±α are the standard references errors
±β  are the errors done while tracing the calibration curve

The total error is a quadrature sum:  and can be 
represented with the ellipsoid show in the figure. 
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An older way of expressing the type B uncertainties [in %] was with the precision class parameter:
where εi is each error or uncertainty source one is able to isolate and estimate scalefull

i i
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Example: 

a class 0.5 dynamometer with a full scale of 100 N makes an absolute error of 0.5N (0.5% relative error) when measuring 100N  
the class 0.5 dynamometer makes the same absolute error of 0.5N when measuring 5 N, which now is a relative error of 
0.5N / 5N = 0.1 = 10 %. 
An advice: never use an instrument for which a precision class is declared at the beginning of the span ! 



We now proceed to explain how to estimate the type A uncertainty :

Type A uncertainty estimation has a completely different approach  →  it does NOT even care about identifying 
error sources !
The method is based on a statistical data post processing and, therefore, we need a sufficient number n of 
repeated measurements with the measurand X held strictly constant !

 

 measurement x 

  ( | )        x 

 

       x 

 

   xb  

 

The final goal is NOT even to find the true value xv but a certain range of values within which the true value could 
reasonably be found !  This range could be written with where xb is the best representation of the 
true value (x best) and δx is a width parameter that might be representative of the uncertainty !
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X  IN    x1 x2 … xn   

 

 

INSTRUMENT xi is the ith measurement of the measurand X

Because our n measurements x1, x2 … xn will be very 
similar each other but not equal between them, which 
of them could possibly be the best representation of 
our n measurements ?   
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The mean value of our data: the n measurements !

So far, there is NO theoretical justification for our choice; its only a very reasonable choice, so reasonable that 
I will try to apply it also to find a quantitative expression for the width parameter δx :

xxd ii  It’s the “deviation” of the generic measurement xi from the mean
Can we calculate the mean value for this deviation ? 
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NO ! because the deviations are 
“equidistant” from the mean value  ! 
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Therefore, the Standard Deviation (of the population) has been proposed ! 
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or, with only a few measurement points, the Standard Deviation (of the sample) ! 
which produces  σx = 0/0  instead of  σx = 0  when n → 1
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Now we can express our measurement xi with the best 

representative and with the width parameter σx !x

xni xxx  1

We have now to ask ourselves:  
How much do we trust these choices ?    Is every measurement falling “inside” the range we just determined ? 
Or, better, what CONFIDENCE do we place in this range of values ?

• To answer these question we have first to construct the figure 
on the left, where we divided the “range” where the 
measurements fell in k small intervals  Δk with at least one 
measurement inside each interval  Δk . 

• The more measurements  xi we have available the more (and 
smaller) intervals we can choose. 

• The height fk of each rectangle is proportional to the number 
of measurements inside each interval  Δk .

• This figure is called the Frequency Histogram. 



FREQUENCY HISTOGRAM

e

nk → number of measurements (observations) that fall 
into the interval Δk

→ frequency of the observations (measurements) 
that fall into the Δk interval 

Obviously: and

The frequency histogram is “normalized” by definition !

The area represent the measurement fraction that falls 
within the Δk interval.
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Note that it is possible to express the mean value of all the n measurements as:
where xk is the best representation of xi inside the Δk interval  
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We now think ideally to bring the number of measurements  n → ꝏ … in this situation we can think of an 
“enormous” number of intervals Δk which are also going to be “smaller and smaller”  …
The stepwise curve of the frequency histogram becomes a smooth limit distribution curve f(x)



Where: 

n → ꝏ

Δk → dx

fk → f(x) 

f(x)dx is the measurement fraction that falls 
within the infinitesimal dx interval

is the measurement fraction that falls 
within the finite interval (b-a)

Because it is 

the limit distribution curve is also normalized ! 
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Frequency
(experimental results) 

Probability
(theoretical model ) 

But, now, which curve describes at best the limit 
distribution curve f(x) ?

It’s the well-known Normal distribution curve or 
Gaussian curve or bell curve …
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 where  X is the “mean” or the true value of x (in fact we have now n → ꝏ measurements) 
and  σ is a “width parameter”  of the function
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If we calculate the mean value for the function fX,σ (x) : we got the mean !Xdxxfxx X  
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If we calculate the mean squared difference for fX,σ (x) : we got the variance !

which is the squared standard deviation …
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Therefore, “theoretically” the mean X is the true value of the measurement and the width σ is 
the standard deviation, calculated for the ideal case of  n → ꝏ measurements !!!



Finally, if we refer to the mathematical model  fX,σ (x), we can express the measurement x with :  

We still have to understand what confidence we give to the width parameter σ …

The good news is that with a “mathematical model” we can calculate the integrals between two specified limits:  
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And they will represent the probability one measurement x has (one of 
the ꝏ we have at disposal) to fall within the range  ± σ, or ± 2σ, or ± 3σ
around the true value X
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The factor k is named in the GUM as coverage factor and leads to the definition of expanded uncertainty …  
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Therefore, writing means there is a 68.3 % 
“probability” to find a measurement x within the 
uncertainty range and  .

In other words, we gained a confidence of 68.3% of 
finding our measurements within the range .

The geometrical representation of the probability
discussed above, is shown left on the 

gaussian distribution curve, also for coverage factors of 
2 and 3, and is the area underlying the curve.
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It is very important to understand the two following concepts:

is a probability and can be calculated before doing a single measurement (having the function) !

is a statistics and can calculated only if we have data available (after doing the measurements) !



Keep always in mind that the confidence intervals and their probability values have been determined from a 
theoretical model or considering ꝏ measurements available, which NEVER happens in the real world, where we 
ALWAYS have only a limited number n of measurements available !

Before applying the results of the probability theory, we have to be reasonably sure that the distribution of our 
measurement is actually a Gaussian one (χ2 test) otherwise, we should rather try applying other statistical 
distributions (t Student) …

Because, by increasing the number n of the measurements the 
standard deviation  σx does not change much, is a 
good way of expressing the uncertainty of the instrument or of 
the measurement method.

Observing the shape of the measurement distributions, it is 
therefore immediate establishing or comparing the accuracy of 
different measuring instruments  !!

Being we still have to understand if it is possible to get 
from our n measurements  x1 x2 … xn any information about the 
accuracy of the measurement ???
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To answer to this ambitious question we have to make a step back and …
get a few basic concepts of the Error Propagation Theory …

Consider a physical quantity  “q = x + y” that can be expressed by the sum of two other primary physical quantities:

and We wish to find: xxx b  yyy b  qqq b 
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with

which might represent the upper limit of the width δq

which might represent the lower limit of the width δq

We might, therefore, think that however, if the errors that lead to δx and δy are independent,  
the choice is an overestimation of the uncertainty for q …  
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In fact, to actually have we should always
underestimate or overestimate at the same time the 
measurement of x and y , which would imply an “underling 
low” or a “correlation” between the two variables, making 
them somehow dependent on each other !

yxq  

If this is the case, then can be a correct choice otherwise, when the measurements and the errors of 
x and y are independent, there is always a “partial mutual deletion” of the uncertainties, the algebraic sum of the x
and y errors is then an “overestimation” of the q uncertainties and it is much more reasonable to add the errors for 
x and y in quadrature : 

yxq  

 
yxyxq   22

Similarly, when we have a measurement expressed as a product
or a quotient of two primary quantities the general 
rule is to add the relative errors in quadrature :

yxq 
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In general, when the variable of interest q is a function 
of a measurable physical quantity x :   q = q(x) 
(for ex. )

It is always possible to measure and 
calculate with the function relationship !
But how are we going to calculate δq ?

If δx is small and due only to random errors,  qmin and 
qmax are almost equidistant from  qb of a distance δq, 
regardless of the function type !
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In this hypothesis we can write: 
which for  δx →  small, can also be written as:

which is the derivative of the function q(x) calculated in xb
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We reach then the important relationship:
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To include also the common cases when the function q(x) is 
decreasing in xb and has a negative derivative in the point xb :

we should rather adjust the result and consider the 
absolute value of the derivative …
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In general, when we wish to know the intensity of a physical quantity “q” that can be expressed with a function of 
two or more other physical variables  q = q(x,y) , and we measure these primary variables with their uncertainties: 

and   ; then we can always use the function relationship to calculate the best 
representative of q :

while for  δq we might consider to apply the superimposition of the effects and use the algebraic sum:
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However, again, if the measurements of x and y and their errors are independent, it is quite reasonable to consider 
that there will be a “partial mutual deletion” of the uncertainties and, to express the general uncertainty δq it is 
much more reliable to add the uncertainties of x and y in quadrature:

22


























 y

y

q
x

x

q
q 

Please, note that the width parameters we used for the measurements x and y are nothing more than the 
Standard Deviations previously calculated: andxx   yy  

Everything said so far can be generalized for the case of a physical quantity  q = q( x1 , x2 , … xn ) which is a function of 
n measurable primary independent variables:

Which is the fundamental statistical law of the Uncertainty Propagation and represents also the Combined 
Standard Uncertainty for uncorrelated input quantities reported in the  GUM – JCGM 100: 2008
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We are now ready to answer our last question: 
Can we actually estimate somehow the accuracy of the measurement itself with only a “limited number N” of 
measurements  x1 x2 … xN ??
This goal can be approached by estimating “how well” the mean value represents the true value X or, trying to 
calculate the uncertainty of       when the mean value is the best representative of the true value  X .

To do so, we start dividing our N measurements xi in m groups of n measurement each : 
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Now we have N = n × m  measurements and, for each group of m 
measurements, we can calculate the mean value j = 1, 2 … m .
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Who is now the best representative of the m mean values ??
It’s the mean value of the m mean values : 
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If X is the “true value” of the n × m measurements , it is also the “true value” for the m means        because 
they come from the same measurements ! 
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the “mean of the means”

jx



If the n × m measurements       are affected only by small random errors, each distribution curve for the m groups of
n measurements will be a normal (Gaussian) distribution curve pj (x) .  
Therefore, the m mean values will also distribute with a normal (Gaussain) curve            around the “mean of 
the means”.  

This happens because each mean value        is a function of the n measurements :
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The width parameter for the distribution of the m 
mean values       will be :

the Standard Deviation of the mean
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The width parameters  δxi are here the Standard Deviations           calculated with the measurements of the jth
measurements group.  Since        are all measurements of the same quantity done with the same instrument … 
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… for a “reasonable number n” of measurements, they will be almost coincident between them :

From the definition of mean value:  it is easily obtained:  

And substituting all these positions in the main equation of the width parameter it results: 

Which is the Standard Error of the mean and gives the uncertainty with which the mean represents the “true value” !

Please, carefully note:
• the Standard Error can be calculated only with the n measurements of one single group but, because of the way it 

was defined, it keeps the powerful meaning of UNCERTAINTY of the MEASUREMENT !!
• if we make more measuements (n → big)  the Standard Error decreases while the Standard Deviation stays about 

the same !   … making more acquisitions makes a better measurement, NOT a better instrument ! 
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Distribution curve of the 
m mean values jx

Distribution curve of the 
n measurements j
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Standard Deviation expresses
the instrument accuracy !

Standard Error expresses
the measurement accuracy !

For the same set on n measurements, the Standard 
Error is always “smaller” than the Standard Deviation !!  


